6ta. CLASE DE GEOMETRÍA – Área figuras tridimencionales

6ta. CLASE DE GEOMETRÍA – Área figuras tridimencionales

SIGUIENTE CLASE

CLASE ANTERIOR

En el tema de hoy vamos a revisar las formulas para obtener el ÁREA DE SUPERFICIE de figuras tridimencionales. En seguida hay una serie de temas previos que puedes revisar y al final el video y ejercicios para la clase de hoy.

 

 

 

Área de superfice, explicación de formulas

Área de superficie – PRISMA RECTÁNGULAR

Área de superficie – PRISMA RECTO

Área de superficie, pirámide

Área de superficie – Cilindro

Área de superficies – cono

Área de superficie – ESFERA

EJERCICIOS DE PRACTICA

Áreas y perímetros sencillos

Áreas y perímetros sencillos

A continuación hay veinte ejercicios sencillos donde solo van a aplicar la formula del área y el perímetro de figuras planas. Estos son para los estudiantes que necesitan practica extra con las formulas básicas.

EJERCICIOS DE PRACTICA:

RESPUESTAS

4ta. clase de Geometría – NOTACIÓN CIENTÍFICA aplicada a áreas y perímetros

4ta. clase de Geometría – NOTACIÓN CIENTÍFICA aplicada a áreas y perímetros

SIGUIENTE CLASE

CLASE ANTERIOR

La clase se transmitirá el jueves 6 de junio a  las 8:00 pm hora este por el canal de YouTube

 

 

 

 

 

La NOTACIÓN CIENTÍFICA es una manera simplificada de representar números o decimales muy largos. Para el tema de hoy puedes aprender mas sobre la notación científica en este enlace:

Notación Científica

Liga: DALE CLICK AQUÍ PARA BAJAR LA CALCULADORA

EJERCICIOS DE PRACTICA

Obtén el área y perímetro de cada figura, representa las medidas en pies. Algunas respuestas pueden representarse mas facilmente en notación científica.

RESPUESTAS

 

 

3ra. Clase de Geometría -Problemas verbales de área y perímetro

3ra. Clase de Geometría -Problemas verbales de área y perímetro

Problemas verbales GEOMETRÍA – Áreas y perímetros

SIGUIENTE CLASE

CLASE ANTERIOR

La clase se transmitirá el jueves 6 de junio a  las 8:00 pm hora este por el canal de YouTube

 

 

 

 

 

Una vez que hemos aprendido los temas de áreas y perímetros, vamos a pasar a los problemas verbales usando dichos temas. Para lo cual puedes repasar los siguientes enlaces y ver la clase una vez que se transmita.

Algunos temas que pueden revisar para apoyar los contenidos de  la clase de hoy.

Pasos para resolver problemas verbales

Problemas verbales y orden de operaciones

Formulas del nuevo examen

EJERCICIOS DE PRACTICA

1. Armando quiere poner una cerca en la hortaliza de su esposa para evitar que los animales se coman las verduras. Si va a usar parte de la barda de la casa como se muestra en la ilustración, ¿cuántos pies de malla necesita para cercar la hortaliza?

2. Marcos, Carlos, Juan y Maritza heredaron un terreno de 130×105 metros, si lo quieren repartir por partes iguales. ¿Cuántos metros cuadrados le toca a cada quien?

3. Luisa va a decorar espejos redondos para la fiesta de cumpleaños de su hijo. Si le va a colocar encaje alrededor de cada espejo, ¿cuánto encaje necesita si en total tiene 35 espejos para la fiesta?

4. Juana tiene un porta lapiceros en forma de cilindro y le va a poner un listón decorativo alrededor de cada extremo del porta lapicero. ¿Cuánto listón necesita si la parte circular del cilindro tiene un radio de 3½ pulgadas? Redondea tu respuesta a la unidad mas cercana.

5. Marta quiere poner pasto en una parte de su jardín circular de tal manera que quede en forma de media luna, si en la parte restante, donde quiere poner flores. Si el jardín mide 12 pies de diámetro y la sección de las flores cubre un área cuadrada de 80ft2, ¿cuántos pies cuadrados de pasto se van a cubrir en el jardín? Redondea tu respuesta a la unidad mas cercana.

6. Ernesto necesita poner una plancha de cemento al frente de la puerta que da al patio. Si quiere que la plancha tenga una forma circular y que abarque el ancho de la puerta, ¿Cuántas pulgadas cuadradas va a cubrir con cemento? OJO, no se pregunta cuando cemento va a usar.

7. María esta haciendo un mantel para su mesa circular, si quiere que el mantel cuelgue ½ de pie de cada extremo, ¿cuántos pies cuadrados de tela va a ocupar para hacer el mantel?

8. Luis quiere poner una alberca circular en el patio de su casa. ¿cuántos pies cuadrados va a cubrir la alberca?

9. Lidia va a poner una jardinera semi circular con las siguientes medidas. ¿cuántos pies cuadrados va a cubrir su jardinera?                                                                                                                 

10. El festival Lolapaloza cuenta con una pista circular que rodea la mayor parte de las locaciones. Si de extremo a extremo mide ½ milla y Laura decide dar tres vueltas alrededor de la pista, ¿cuántas millas recorrerá? Redondea tu respuesta a la décima mas cercana.

RESPUESTAS

  1. 14ft
  2. 1625m2  
  3. 989 pulgadas
  4. 44 pulgadas
  5. 33ft2
  6. 12ft2
  7. 19.6ft2
  8. 314ft2
  9. 42ft2
  10. 4.7 millas
2da. CLASE DE GEOMETRÍA – Formulas y perímetros

2da. CLASE DE GEOMETRÍA – Formulas y perímetros

SIGUIENTE CLASE

CLASE ANTERIOR

La clase se transmitirá el jueves 23 de mayo a  las 8:00 pm hora este por el canal de YouTube

 

 

 

 

 

Vamos a dar inicio con la segunda clase para lo cual puedes revisar los siguientes temas previos.

FORMULAS DE PERÍMETROS

Obtener los perímetros puede ser un tema sencillo ya que solo debemos sumar todos los valores de los lados de la figura y ¡listo! Pero ¿qué pasa si nos los presentan en pies y piden la respuesta en pulgadas? ¿o si nos piden el perímetro de una figura compuesta por varias figuras geométricas? Eso es lo que vamos a aprender en la clase de hoy.

Para ello toma nota de las equivalencias entre YARDAS, PIES Y PULGADAS.

También puedes revisar estos videos.

EJERCICIOS DE PRACTICA – YARDAS, PIES Y PULGADAS

VIDEO DE LA CLASE TRANSMITIDA EL 23 DE MAYO

EJERCICIOS DE PRACTICA

Para el ejercicio 13 solo obtén la línea solida. También puedes practicar representando las formulas modificadas de las figuras compuestas (ejercicio 9 – 14).

RESPUESTAS:

  1. 32cm
  2. 42ft
  3. 12.56ft
  4. 13cm
  5. 23in
  6. 28cm
  7. 28ft
  8. 37.68ft
  9. 26.13in
  10. 42.42in
  11. 50.13in
  12. 66.5in
  13. 12.56in
  14. 70in

FORMULAS DE LAS FIGURAS COMPUESTAS (Tu respuesta puede variar al representar la circunferncia o puedes representar las fracciones en decimales)

1ra. CLASE DE GEOMETRÍA  – ÁREAS

1ra. CLASE DE GEOMETRÍA – ÁREAS

SIGUIENTE CLASE

¡BIENVENIDOS!

Esta es una serie de clases que vamos a impartir durante el verano. En esta primera clase revisamos el tema de ÁREAS de figuras planas y figuras compuestas. Revisa el video y si los temas que están en seguida para estudiar. Si después de hacerlo tienes alguna recomendación o encuentras los temas muy dificiles, me pueden enviar un mensaje info@spanishged365.com o dejar sus dudas al final del articulo. 

Durante este verano 2019 las clases se van a impartir los jueves a las 8:00 pm hora este y los sábados a las 10:00 am hora este por el canal de YOUTUBE, una vez que se termine la clase vas a encontrar las tareas y el video publicado en nuestra pagina web.

Aquí puedes suscribirte al canal de YouTube (solo dale click a la imagen)

 

 

 

 

Si consideras que debes repasar mas el tema, puedes revisar el tema de «ÁREA Y PERÍMETRO», «ÁREA DE FIGURAS COMPUESTAS» Y «ÁREA Y PERÍMETRO». También van a encontrar el enlace para las formulas y otro donde se explica como usar la calculadora.  Recuerden que para el HiSET y TASC ustedes pueden llevar cualquier calculadora cientifica y para el GED solo se puede usar la TI-30XS Multiview. Después de estos temas van a encontra mas ejercicios de practica.

Formulas del nuevo examen

Área y perímetro

Áreas y perímetros sencillos

Área de figuras compuestas

Área y perímetro de figuras compuestas

Calculadora TI-30XS

EJERCICIOS DE PRACTICA

Obtén las siguientes áreas: 

  1. Obtén el área de un rectángulo con un largo de 15 pies y un ancho de 4 pies.
  2. ¿Cuál es el área de un circulo con una diámetro de 8 pulgadas?
  3. Un triángulo con una altura de 15cm y una base de 10cm.
  4. Un trapecio con una altura de 10pies, la base uno mide 8pies y la base dos 20 pies.
  5. El área de un romboide con una base de 13in y una altura de 7in.
  6. El área de la mitad de un círculo con un diámetro de 6cm.
  7. Un triangulo cuya base es de 14 pies y su altura es el doble.
  8. Un rectángulo cuya base es el doble del ancho y este mide 7cm.
  9. El área de un cuadrado cuyo lado es de 3.5pulgadas.
  10. Un trapecio con una altura de 11cm, base 1 = 9cm y base 2 = 15cm
  11. Si Luisa tiene dos tapetes, uno de forma rectangular cuyas medias son 5 pies de largo y 3 pies de ancho y otro tapete circular con un radio de 2 pies, ¿cuál tapete es más grande?
  12. Juan quiere decorar su pasillo con mosaico, para lo cual va a poner tres franjas rectangulares que midan dos pies de ancho y 14 pies de largo cada una. ¿Cuál es el área total que van a cubrir las franjas? 

OBTEN EL ÁREA DE LAS SIGUIENTES FIGURAS Y REPRESENTA LA FORMULA COMBINANDO AMBAS FIGURAS

¿Cuál es el área de la parte gris si el diámetro del círculo es 8cm?

RESPUESTAS

  1. 60ft2
  2. 24in2
  3. 75cm2
  4. 140ft2
  5. 91in2
  6. 31cm2
  7. 196ft2
  8. 98cm2
  9. 25in2
  10. 132cm2
  11. El rectángulo
  12. 84ft2
  13. 72ft2
  14. 1in2
  15. 1in2

OTROS EJERCICIOS EXTRA EN ESTE ENLACE

¿Cómo obtener la base y altura de un triángulo?

¿Cómo obtener la base y altura de un triángulo?

Para obtener el área de un triángulo solo hay que seguir la fórmula, pero si lo que se quiere obtener es el valor de la altura o la base es donde algunos estudiantes pueden tener más dificultad.

Y los podemos obtener despejando la fórmula, veamos los pasos siguientes de cómo hacerlo:

Para obtener la BASE de un triángulo con un área de 20ft2y una altura de 4ft:

FÓRMULA

PASO I

Identificar la operación que representa ½bh, en este caso es multiplicación. 

PASO II

Dejar la variable del valor que queremos buscar, en este caso la “b” y pasar el resto de los valores al otro lado del signo igual con la operación contraria. Si estan multiplicando, pasan dividiendo.

En este caso se pasa el ½h dividiendo el área.

PASO III

Se sustituyen valores y se resuelve. Pista, recuerda que cualquier número multiplicado por ½ es la mitad del número.

EJERCICIOS DE PRACTICA

  1. Calcula la altura de un triángulo con una base de 20cm y un área de 50cm2
  2. ¿Cuál es la altura de un triángulo cuya área total es de 45cm2y su base es de 5cm?
  3. Si un triángulo tiene una altura de 16cm y un área de 40cm2¿cuál es el valor de su base?
  4. El área de un triángulo es de 81cm2, ¿cuál es su base si tiene una altura de 18cm?
  5. El área de un triángulo es de 50cm2, ¿cuál es su altura si su base es de 10cm?​​​
  6. Si el área de un triángulo es de 58in2y su base mide 20in, ¿cuál es su altura?
  7. Obtén la base de un triángulo con un área es de 96in2y una altura de 12in.
  8. Calcula la altura de un triángulo con un área de 39in2  y una base de 6in.
  9. Si un triángulo tiene un área de 60ft2y una altura 10ft, ¿cuál es su base?
  10. ¿Cuál es la altura de un triángulo con una base de 7ft y un área de 42ft2?

RESPUESTAS:

  1. 5cm
  2. 18cm
  3. 5cm
  4. 9cm
  5. 10cm​
  6. 5.8in
  7. 16in
  8. 13in
  9. 12ft
  10. 12 ft
Ejercicios para obtener radio y altura del cilindro

Ejercicios para obtener radio y altura del cilindro

Un tema importante en geometría es obtener valores desconocidos despejando la fórmula de cada figura geométrica. En el caso del cilindro, nos pueden pedir obtener el radio y la altura o quizás necesitemos esos valores para resolver otros valores. 

Si este tema te parece un poco difícil, puedes revisar los conocimientos previos a este tema:

Formulas

Área

Volumen

Despejar formulas

Ten presente que el cilindro está compuesto por un circulo y un rectángulo. Las partes del circulo son: 

circunferencia: es la parte 

radio

diámetro

Para obtener el volumen del cilindro seguimos la siguiente formula

V = volumen

π = pi (3.1416)

r = radio

h = altura

Si queremos obtener el radio, al despejar, la formula nos queda de la siguiente manera:

Si lo que queremos obtener es la altura seguimos la siguiente formula:

A continuación, se explica paso a paso cómo despejar la fórmula del volumen de un cilindro si se desconoce el radio o la altura. Para otras figuras geométricas puedes visitar este enlace. 

EJERCICIOS

  1. Obtener el radio de un cilindro con una altura de 9cm y un volumen de 452cm3
  2. Si un cilindro tiene un radio de 5 y un volumen de 339cm3, ¿cuál es su altura?
  3. Si un cilindro tiene un volumen de 88cm3y una altura de 7cm, ¿Cuál es su DIÁMETRO? Pista: primero obtén el radio.
  4. Si tenemos un cilindro con una altura de 15cm y un volumen de 1696cm3. Obtén el radio.
  5. Juan va a usar un tráiler de forma rectangular para transportar un cilindro con una capacidad de 2155ft3, y un diámetro de 14ft, ¿cuál es la altura mínima que debe tener la caja del tráiler para que puedan transportar el cilindro?
  6. Si la altura de un cilindro es 8cm y su volumen es de 308cm3¿cuál es su radio?
  7. Obtén el diámetro de un cilindro con una altura de 20cm y un volumen de 4021cm3.
  8. Calcula el radio de un cilindro con una altura de 3233 cm3y una altura de 21cm.
  9. Si el radio de un cilindro es de 3cm y su volumen es de 804cm3, ¿cuál es su altura?
  10. El volumen de un cilindro tiene un total de 804cm3y una altura de 16cm, obtén su radio.

RESPUESTAS:

  1. 4cm
  2. 4.31cm
  3. 4cm
  4. 6cm
  5. 14ft
  6. 3.5cm
  7. 16cm
  8. 7cm
  9. 17cm
  10. 4 cm
Yardas, pies y pulgadas

Yardas, pies y pulgadas

Aprender las equivalencias entre yardas, pies y pulgadas es una parte fundamental para los contenidos de geometría del examen de MATEMÁTICAS. 

Para los que estas acostumbrados a usar el sistema métrico puede ayudar asociar una YARDA con un METRO, aunque no representan el mismo tamaño, su equivalencia es casi igual. (Un metro equivale a 1.09 yardas)

YARDAS

Iniciando con la yarda, esta se compone de tres pies.

De esta manera se pueden convertir pies a pulgadas. Si queremos convertir yardas a pies, multiplicamos y para convertir pies a pulgadas dividimos.

Veamos un ejemplo: Si tenemos 5 yardas y queremos representarlas en pies multiplicamos por tres. 5 x 3 = 15 por tanto 5 yardas equivalen a 15 pies. 

También podemos convertir los pies a yardas, Si se tienen 21 pies para representarlos en yardas, se divide entre tres. 21 ÷3 = 7 por tanto 21 pies equivalen a 7 yardas. 

PIES

Con respecto al pie, este equivale a 12 pulgadas. 

Para convertir pies a pulgadas se multiplican por 12

Para convertir pulgadas a pies, se divide entre 12

Ejemplo I

Obtener la equivalencia de 8 pies en pulgadas.

PASO I

Multiplicar 8 x 12 = 96

Por tanto 8 pies equivalen a 96 pulgadas

Ejemplo II

Obtener la equivalencia de 120 pulgadas a pies

PASO I

Dividir 120 entre 12 = 10

Por tanto 120 pulgadas equivalen a 10 pies.

Hasta ahí es sencillo, pero qué pasa si tenemos fracciones o parte de una de un pie.

 

EQUIVALENCIA EN FRACCIONES ENTRE PIES Y PULGADAS

TERCIOS

Primero podemos representar el pie en tercios, lo dividimos en tres partes, es lo mismo si dividimos 12 entre 3 = 4, (ver ilustración).

Quiere decir que cada segmento equivale a 4 pulgadas, así tenemos que:

CUARTOS

También se puede dividir el pie en cuatro segmentos lo que equivale a 12 entre 4 = 3. Quiere decir que cada cuarto de pie representa 3 pulgadas

 

EJERCICIOS DE PRACTICA

CONVERTIR DE PIES A PULGADAS

  1. 4 ½ pies
  2. 8 ¾ pies
  3. 5 pies
  4. 2  1/3 pies
  5. 6 ¼ pies
  6. 3 ½ pies
  7. 15 pies
  8. 7 2/3 pies
  9. 1 ¾ pies
  10. 2 2/3 pies​

Respuestas

  1. 1. 54 pulgadas
  2. 2. 105 pulgadas
  3. 3. 60 pulgadas
  4. 4. 28 pulgadas
  5. 5. 75 pulgadas
  6. 6. 42 pulgadas
  7. 7. 180 pulgadas
  8. 8. 92 pulgadas
  9. 9. 21 pulgadas
  10. 10. 32 pulgadas​

CONVERTIR YARDAS A PIES Y PULGADAS

  1. ½ yardas a pulgadas
  2. 3 1/3 yardas a pies 
  3. 5 yardas a pies
  4. 4 2/3 yardas a pies
  5. 6 yardas a pulgadas
  6. 8 yardas a pies
  7. 12 1/3 yardas a pies
  8. 1 yarda a pulgadas
  9. 3  yardas a pulgadas
  10. 4 yardas a pies

Respuestas

  1. 90 pulgadas
  2. 10 pies 
  3. 15 pies
  4. 14 pies 
  5. 216 pulgadas
  6. 24 pies
  7. 37 pies
  8. 36 pulgadas
  9. 108 pulgadas
  10. 12 pies

CONVERTIR PULGADAS A PIES O YARDAS

  1. 126 pulgadas a pies
  2. 60 pulgadas a yardas
  3. 40 pulgadas a pies
  4. 75 pulgadas a pies
  5. 212 pulgadas a pies
  6. 36 pulgadas a pies
  7. 54 pulgadas a yardas
  8. 12 pulgadas a yarda
  9. 28 pulgadas a pies
  10. 92 pulgadas a pies​

Respuestas:

  1. 42 pies 
  2. 5 yardas
  3. 3 1/3 pies
  4. 6 ¼ pies
  5. 17 2/3 pies
  6. 3 pies
  7. 1 ½ yardas
  8. 1/3 yarda
  9. 2 1/3 pies
  10. 7 2/3 pies
Área de figuras compuestas

Área de figuras compuestas

Una de las habilidades que se evalúa en el examen de matemáticas es el pensamiento crítico. 

Al estudiante le pueden presentar desde problemas verbales con textos extensos hasta ejercicios aparentemente sencillos de geometría.

Entre ese tipo de ejercicio puede estar obtener el área, que es un tema sencillo, pero al combinar uno o mas figuras puede tener un grado de dificultad mas elaborado. A

A continuación, se presentan tres videos donde se explica el uso de formulas y la manera de resolverlos. Al final de cada video hay ejercicios de practica.

 

EJERCICIOS DE PRACTICA

 

 

Área de superfice, explicación de formulas

Área de superfice, explicación de formulas

Una parte importante de los temas de geometría es el área de superficie (SA), que no es otra cosa que forrar figuras tridimensionales como el cilindro, la esfera o en palabras mas sencillas, una caja.

 Para saber qué cantidad de material se necesita para forrarlas, cada figura geométrica tiene su fórmula. Ahora, lo recomendable antes de intentar resolver cualquier fórmula, es aprender lo que representa cada variable (letra) y constante (número).

En los siguientes videos se explican cada una de dichas formulas así como la parte que representan en la figura. Es importante que te familiarices con estos conceptos para poder después resolver ejercicios con datos reales y posteriormente problemas verbales relacionados con este tema. 

PRISMA RECTO

SA = ph + 2B

p = perímetro

h = altura

B = área de superficie

PRISMA RECTÁNGULAR

SA = 2lw + 2lh + 2wh

l = largo

w = ancho

h = altura

PIRÁMIDE

SA = ½ps + B

p = perímetro

s = altura de incinación

B = área de la base

ESFERA

SA = 4πr2

π= Pi  (3.14)

r = radio

CONO

SA = πrs + πr2

π= Pi  (3.14)

r = radio

s = altura de inclinación

EJERCICIOS

Para los siguientes ejercicios no es necesario asignar valores a las formulas, solo debes escribir la parte de la fórmula que se te pide.

  1. Escribe la parte de la fórmula con la que puedes obtener la parte circular del cilindro.
  2. ¿Con cuál fórmula podrías obtener el área de superficie de un prisma recto quitando la parte superior?
  3. ¿Cuál expresión indica la mitad del área de superficie de una esfera?

a) SA = 4πr

b) SA = 2πr2

c) SA = ½πr2 

 

  1. ¿Qué parte de la fórmula del prisma recto indica las bases.
  2. ¿Qué parte de la fórmula de un cono debes usar si no quieres cubrir la parte inferior, sin incluir el circulo?
  3. Imagina que tienes una jaula para tu mascota y quieres forrar la parte de encima (sin cubrir la parte que toca el suelo). ¿Cómo podrías representar la fórmula?

RESPUESTAS

  1. SA = ph
  2. SA = ps + B
  3. c
  4. SA = 2B
  5. SA =  πrs
  6. SA = lw + 2lh + 2hw
Área de superficie, pirámide

Área de superficie, pirámide

La pirámide está compuesta por cuatro triángulos y la base puede ser cuadrada o rectángular.  Si la base es cuadrada, los cuatro triángulos van a ser correspondientes quiere decir que van a tener las mismas medidas. Ahora, si la base es rectangular, la parte superior va a estar compuesta por dos pares de triángulos, cada par con las mismas medidas.

Por lo tanto, para obtener el área de superficie, hay que obtener el área de cuatro triángulos y un cuadrilátero.

Analicemos la fórmula.

SA = ½ ps + B

En la primera parte ½ ps se multiplica un medio por el perímetro por la altura de inclinación. También se puede sustituir ½ por .5 y en la siguiente imagen se indica de donde se obtienen los valores de “p” y “s”.

 

En la imagen, la parte verde representa el valor del perímetro “p” y la línea roja es la altura de inclinación representada por la “s” en la fórmula.

Para obtener el valor de “p”, si la base es cuadrada se multiplica cuatro por el lado (5).

Si la base es rectangular, se sigue la siguiente formula: p = 2L + 2w

Sustituyendo tenemos:

SA = ½ x 20 x 8

Para la segunda parte de la fórmula que es la “B” se debe obtener el área de la base. Si la base es cuadrada, se eleva el valor del lado al cuadrado

A = L2, sustituyendo, A = 52  (cinco por cinco).

Con todos los valores la fórmula nos queda de la siguiente manera:

SA = ½ x 20 x 8 + 25

Paso I

Multiplica ½ por 20 por 8

SA = 80 + 25

Paso II

Suma ambos valores

SA = 105 cm2

Ejemplo II

 

Ahora revisemos un ejemplo con la base rectangular.

 

Paso I

Obtén el valor de “p” (perímetro)

P = 2L + 2W

Sustituye los valores

P = 2(9) + 2(5)

Multiplica (los paréntesis indican multiplicación)

P = 18 + 10

Suma

P = 28cm

Obtén el valor de “B” (área de la base)

B = lw

Sustituye valores

B = 9(5)

Multiplica

B = 45cm2

PASO II

Una vez que obtienen el valor de “p” (perímetro) y “B” (área de la base), el siguiente paso es sustituir los valores en la formula

SA = ½ ps + B

SA = ½ (28) (12) + 45

Multiplica los paréntesis

SA = 168 + 45

Suma ambos valores

SA = 213cm2

EJERCICIOS:

Pista: Para los ejercicios 3 y 4 se da el valor de B que representa el área de la base. Para obtener «p» se debe despejar la formula del área para obtener el largo. En este enlace se explica como despejar una formula. (B=LW,  solo divide el valor de B entre el de W). En la número ocho, la base es cuadrada, para obtener el valor del lado, solo hay que obtener la raíz cuadrada de 36.

 

Respuestas:

1. 185m2

2. 28m

3. 61m2

4. 104m2

5. 216m2

6. 152m2

7. 187.5m2

8. 165m2

Perímetro de polígonos irregulares

Perímetro de polígonos irregulares

Obtener el perímetro es uno de los temas mas sencillos en geometría ya que solo consiste en sumar los lados externos de la figura. El cuadrado, rectángulo y triángulo son las figuras geométricas mas sencillas. Los polígonos se clasifican según la posición de sus ángulos y la cantidad de lados en una figura plana. Entre los mas sencillos se encuentran los regulares e irregulares; en los primeros, todos sus lados tienen la misma longitud al igual que sus ángulos internos. Por su parte los polígonos irregulares nos indica simplemente que nos son regulares, ósea que no tienen lados y ángulos iguales.

Para obtener el perímetro de los polígonos irregulares simplemente hay que sumar todos sus lados. El grado de dificultad se incrementa cuando no nos presentan todas las medidas y hay que obtenerlas con los datos que se nos presentan.

Para obtener el perímetro de las siguiente figuras, hay que buscar el valor de los lados que no están escritos (lineas azules) y al final sumar todos los valores.

1. 

2. 

3. 

 

4. 

PARA OBTENER LA LONGITUD DEL LADO INCLINAD DE LAS SIGUIENTES FIGURAS, USA EL TEOREMA DE PITAGORAS.

5. 

 

6. 

7. 

RESPUESTAS:

1. 38in

2. 44in

3. 38in

4. 42in

5. 40.6in

6. 48.6in

7. 40.6in

Factor de escala

Factor de escala

Una “escala” aplicada a geometría o cualquier representación que incluya distancias y dimensiones nos permite presentar proporciones aplicables a un mapa, plano o incluso cantidades.

Los sistemas de medidas que se empleen casí siempre van a pertenecer a la misma familia, quiere decir  que si en el dibujo de un mapa se usan centímetros, en la distancia real van a equivaler a metros o kilómetros. Por el contrario, si se usa el sistema ingles se pueden usar pulgadas, pies, yardas o millas. 

A continuación tenemos dos ejemplos de esos sistemas de medida. Pensemos que las figuras representan dos mapas, en el chico el largo mide 1 cm; en el grande es de 2 kilómetros. Quiere decir que por cada centímetro que haya en la figura chica, van a recorrer dos kilómetros en la figura grande. 

Una escala siempre puede variar, dependiendo que “factor de escala” se use, no es otra cosa que la equivalencia que se esta usando. Para obtenerlo es muy sencillo, simplemente se identifican los valores o medidas que están en la misma posición de ambas figuras (pueden ser mapas, planos, figuras geométricas, etc.).

Una vez identificadas dichas medidas, se divide el valor de la mas grande entre la mas chica. Usando el ejemplo anterior dividiríamos 2 entre 1 y la tendríamos que el factor de escala que se uso es 2. 

No necesariamente va a ser así de sencillo. Veamos otro ejemplo:

En este ejemplo el ancho de la figura pequeña es 3 pies y el ancho de la figura grande es 8 millas. Esto nos indica que por cada 3 pies que se recorren en la figura chica, va equivaler a 8 millas en la figura grande. Para obtener el factor de escala hay que dividir 8 entre 3 y la respuesta es 2 enteros con 1/4 o en decimales 2.25.

Encontrar  el factor de escala es de mucha utilidad ya que una vez que se tiene, se pueden encontrar otras medidas que quizás se desconocen solo hay que seguir las siguientes reglas. (Recuerda, los valores deben estar en la misma posición en ambas figuras).

  • Para obtener una medida de la figura grande y se tiene el valor de la figura chica se multiplica dicho valor por el factor de escala.
  • Para obtener una medida de la figura chica y se tiene el valor de la figura grande se divide dicho valor entre el factor de escala.

Por tanto para encontrar la equivalencia en millas de la figura grande solo multiplicamos 4 pies por el factor de escala y la respuesta debe ser 9 millas.

 

Preguntas de practica:

Responde la pregunta 1, 2 y 3 con la información presentada en la imagen.

1. Identifica el factor de escala de la siguiente figura.

2. ¿Cuál es el valor de m?

3. ¿Cuál es el valor de n?

4. La distancia real entre dos ciudades es de  45 kilometros, si un estudiante quiere dibujar el mapa a escala, ¿qué factor de escala estaría usando si la distancia en el mapa del dibujo es de 5cm?

Respuestas:

1. 3

2. m = 4.5 yardas

3. n = 3 pulgadas

4. 9